Extended English version: white_light_for_reptiles.pdf
(Da Amphibien ein sehr ähnliches Farbsehen wie der Mensch haben, gilt dieses Seite ausnahmsweise nicht für Amphibien)
Ich hoffe hier folgende Kernbotschaften zu vermitteln:
Das Farbsehen des Menschen basiert auf den drei Grundfarben Rot, Grün und Blau. Bei Reptilien haben hingegen basiert das Farbsehen auf drei oder vier Grundfarben: UVA, Blau, Grün und ggfs. Rot. Mehr zum Farbsehen unter Farbsehen
Oft wird darauf herumgeritten, wie wichtig der Farbwiedergabeindex (CRI, Ra) und die Farbtemperatur (Kelvin) in der Reptilienhaltung seien. Dahinter steckt aber vermutlich der Wunsch, eine Lampe zu nutzen, die für Reptilien möglichst sonnenähnlich ist und ein unverfälschtes Farbsehen ermöglicht. Leider gelten diese beiden Werte nur für das menschliche Farbsehen und sind für Reptilien bedeutungslos.
Die meisten Lampen sind nur für uns Menschen weiß. Für Reptilien werden vermutlich alle Lampen einen leichten Farbstich haben, viele Lampen sind aber deutlich farbig. Wer für Reptilien weiße Lampen im Terrarium nutzen will sollte um LEDs einen weiten Bogen machen und Leuchtstoffröhren mit UVA oder HCI-Strahler verwenden.
Wer sich fragt, ob dieser Aufwand überhaupt nötig ist: Dazu zwei Antworten.
Hinweis: In der Lampendatenbank finden sich diese und weitere Grafiken für zahlreiche weitere Lampen.
Mehr zum Farbsehen von Reptilien steht auf der Seite Farbsehen. Dort sind wissenschaftliche Untersuchungen zusammengefasst. Sie belegen, dass Schlangen und Geckos wie der Mensch ein Trichromatisches Farbsehen haben jedoch mit den drei Grundfarben UVA, Blau und Grün, statt wie der Mensch Blau, Grün und Orange. Die übrigen Echsen sowie Schildkröten haben ein Tetrachromatisches Farbsehen mit den vier Grundfarben UVA, Blau, Grün und Orange.
Ich nutze für die folgenden Bewertungen diese Empfindlichkeiten der vier Photorezeptoren im Reptilienauge:
Die nächsten Bilder zeigen jeweils:
Diese hochaufgelösten Spektren zeigen alle physikalischen Details, z.B. welche Moleküle in der Erdatmosphäre vorhanden sind und das Licht filtern oder welche Moleküle in einer Entladungslampe vorhanden sind.
Für das Farbsehen ist diese hohe Auflösung aber oft irreführend. Man braucht ein Spektrometer mit vielen Hundert oder vielen Tausend Kamerapixeln, um die feinen Linien im Spektrum sichtbar zu machen. Das Reptilienauge hat aber nicht Tausende sondern nur vier Rezeptoren für unterschiedliche Wellenlängen. Diese ganzen Details der feinen Linien sind für das Auge unsichtbar. Wichtig ist, wie die Energie auf einer viel gröberen Auflösung verteilt ist.
Daher zeigen die Grafiken auch:
Wenn das Lampenlicht für das Reptilienauge eine ähnliche Farbe hat, wie das Sonnenlicht, dann liegen die vier farbigen Balken nahe bei den vier grünen Markierungen.
Die höhe der drei oder vier Balken zeigt, welche Farbe das Auge sieht. Nah verwandt dazu ist das RGB-Farbsystem, mit dem Farben in Software beschrieben werden. Das RGB-Farbsystem ist auch ein guter Weg um mit den Farbkoordinaten vertraut zu werden. Wenn der Rot-, Grün- und Blauwert gleich groß sind, ist die resultierende Farbe weiß. Bereits eine kleine Verringerung z.B. des Rotanteils führt zu einem blaustichigem Weiß. Wenn einer der drei Farbanteil Null ist, ist die Farbe stark gesättigt.
Drei Farbwerte sind gar nicht notwendig um die Farbe, die ein Mensch wahrnimmt, zu beschreiben. Denn die Farbe hängt nur vom Verhältnis der drei Werte ab: (250:200:0) ist die selbe Farbe wie (200:160:0) - nur mit anderer Helligkeit.
In der Farbwissenschaft ist es daher üblich nur die relativen Werte $x=\frac{R}{R+B+B}$ und $y=\frac{G}{R+G+B}$ zu verwenden und diese (x,y)-Koordinaten in ein Diagramm, das sogenannte CIE-Farbdreieck - einzuzeichnen. Dieses Farbdreieck wird vielfältig genutzt: Lampenhersteller geben nicht nur Farbwiedergabe und Farbtemperatur sondern auch den (x,y)-Farbort an. Auch beim Kauf von hochwertigen TV- oder Computerbildschirmen ist im Datenblatt in einem CIE-Farbdreieck eingezeichnet, welche Farben dargestellt werden können. Und Fotografen und Grafiker sind ebenfalls nicht nur mit dem CIE-Farbdreick sondern auch anderen Farbräumen vertraut.
Für ein Reptil mit drei Photorezeptoren ist es sehr einfach eine Reptilien-Farbdreieck zu zeichnen und dort den Farbort jeder Lichtquelle einzutragen. Für ein Reptil mit vier Photorezeptoren ist der Farbraum eine Pyramide, die schwieriger darzustellen ist und auf die ich hier daher verzichte.
Für jede Lichtquelle wird hier zusätzlich zum Spektrum das Farbdreieck eines Reptils mit drei Photorezeptoren gezeichnet. Das zeigt:
Das Sonnenspektrum enthält die Farben Blau bis Rot in ungefähr gleicher Intensität, Violett ist nur noch halb so intensiv, kurzwelliges UVA noch geringer.
Da das Spektrum mein Referenzspektrum ist, liegen hier die farbigen Balken und die dunkelgrünen Markierungen exakt aufeinander. Im Farbdreieck liegt der Farbort des Sonnenspektrums natürlich auch mitten im “Tageslicht-Bereich”.
Bei LEDs können Entwickler sehr gut die Zusammensetzung des Lichts kontrollieren, trotzdem strahlen alle normalen weißen LEDs weder Infrarot noch UV ab. Das Spektrum beginnt bei ungefähr 420 nm (blau) und endet bei etwa 700 nm (Orange). Für das menschliche Auge ist dieses Licht weiß und die Farbtemperatur kann gut zwischen 2700 K und 8000 K eingestellt werden. Wenn der Spektralbereich zwischen 420 nm und 700 nm gleichmäßig gefüllt ist, was durch die richtige Leuchtstoffwahl erreicht wird, hat die LED auch eine hohe Farbwiedergabe von über 90.
Aus Reptiliensicht gibt sich ei anderes Bild. Zwar ist die effektive Bestrahlungsstärke für den Blau-, Grün- und den Rotzapfen ähnlich wie im Sonnenlicht, der UV-Zapfen geht jedoch leer aus, weil LEDs kein UVA abstrahlen. Der Farbort der beiden LEDs liegt deutlich außerhalb des Bereichs des natürlichen Tageslichts.
Wenn die LED auch noch UVA-Licht hätte, wäre sie für Reptilien weiß. So fehlt ihr aber ausschließlich das UVA-Licht: Die LED hat exakt die Komplementärfarbe zu UVA. Komplementärfarben zu den Primärfarben erzeugen normalerweise einen sehr stark Farbeindruck. Für den Menschen muss weißes Licht Blau, Gelb und Rot in etwa gleichen Anteilen haben. Wenn eine Lampe - wie z.B. LEDs optimiert für die Pflanzenzucht - nur Blau und Rot abstrahlt und der Grün-Zapfen im menschlichen Auge kaum etwas sieht, erscheint und diese Lampe stark farbig, in diesem Fall stark Pink. Für eine Reptil wird eine LED daher voraussichtlich nicht so wirken, als hätte sie einen etwas komischen Farbstich oder als hätte sie eine etwas andere Farbtempertur, sondern die LED wird eine satte und grelle Komplementärfarbe zu UVA haben. Für ein Reptil mit drei Zapfen (UVA, blau, grün), wird eine LED die gleiche Farbe haben wie Licht mit 480 nm Wellenlänge (türkis).
Wer LEDs - auch zusätzlich zu anderen und weißen Lichtquellen - im Terrarium einsetzen will, sollte sich immer fragen, ob er das auch tun würde, wenn die LED pink wäre. Ich würde das nicht tun.
Die typische Büro-Leuchtstoffröhren mit Farbcode 830 - 865 und 930 - 965 besitzen keinen UV-Leuchtstoff. Die Quecksilberfüllung erzeugt jedoch Strahlung bei 365 nm und 405 nm, die bei den meisten Lampen auch durch das Glas dringt. Diese UV-Strahlung sorgt dafür, dass der UV-Zapfen zumindest etwas Licht sieht. Die Lampen sind für Reptilien vermutlich zumindest weißlich1).
“Vollspektrum” ist leider kein geschützter Begriff. Jeder Hersteller versteckt etwas anderes hinter der Werbebotschaft Vollspektrum. Es gibt aber einige Leuchtstofflampen (manche mit, manche ohne die Bezeichnung “Vollspektrum”), die einen zusätzlichen UVA-Leuchtstoff mit Emission im Bereich 350 nm - 400 nm haben.
Besonder sticht dabei die Leuchtstofflampe “Sylvania Activa F 172” heraus, die mit einem Leuchtstoff zwischen 350 und 400 nm genau den für Reptilien sichtbaren Bereich auffüllt.Ihre Farbe ist für Reptilien sehr nahe am Sonnenlicht: Die vier Zapfen sehen bei dieser Lampe jeweils ähnlich viel Licht wie bei Sonnenlicht. Der Farbort liegt im Bereich des natürlichen Tageslichts.
Andere Lampen:
UVB-Leuchtstofflampen (Typ “UVA340”) haben einen breiten Leuchtstoff mit Emission zwischen 300 nm und 380 nm. Dieser Leuchtstoff scheint technologisch bedingt nicht mit einem zusätzlichen langwelligen UVA-Leuchtstoff vereinbar zu sein. Daher haben UVB-Leuchtstofflampen immer eine Lücke im Spektrum zwischen 360 nm und 400 nm. Es hängt daher stark davon ab, bis zur welchen Wellenlänge Reptilien UVA sehen können: Ein Reptil, das weit in den UVA-Bereich hinein sehen kann, wird viel UVA wahrnehmen. Ein Reptil, das nur etwas in den UVA-Bereich hinein seit, wird kaum UVA wahrnehmen.
Metallhalogeniddampflampen können ähnlich wie Leuchtstofflampen ein sehr unterschiedliches Spektrum haben, je nachdem welche Füllung verwendet wird.
Der HCI 942 Strahler (oben) hat ein extrem sonnenähnliches Spektrum. Das hoch aufgelöste Spektrum des HQI NDL Strahlers (unten) zeigt, das die Quarzbrenner (HQI) ein etwas weniger ausgewogenes Spektrum haben als die Keramikbrenner (HCI). Für das menschliche Auge und aus Lebensdauersicht sind Keramikbrenner den Quarzbrennern eindeutig überlegen. Von der Perspektive des Farbsehens von Reptilien her, sehe ich zwischen den beiden Brennertechnolgien keinen Unterschied.
Der Iwasaki Eye Color HQI-Brenner hat ein besonders sonnenähnliches Spektrum mit einer beeindruckenden Farbwiedergabe für das menschliche Auge von 96. Aus Reptiliensicht sehe ich keinen deutlichen Unterschied zu den anderen Metallhaloginddampflampen.
Während die “normalen” HQI und HCI-Strahler sehr sonnenähnliche Spektren haben, ist die Situation bei den UVB-HQI-Strahlern (Lucky Reptile und Co) anders. Hier wird eine andere Füllung verwendet, weil die Lampen auch UVB abstrahlen sollen. Das Spektrum besteht stärker aus einzelnen Linien. Dieses Linienspektrum muss allerdings für den Farbeindruck der Lampe nicht unbedingt negativ sein. Auch Leuchtstoffröhren haben ein Linienspektrum, können für den menschlichen Betrachter aber exzellente Farbeigenschaften haben.
Der Nachteil der UVB-HQI-Strahler liegt darin, dass sie meist einen etwas zu hohen Violett- und UVA-Anteil haben, der nicht sonnenähnlich ist. Diese Lampen werden für Reptilien daher einen UVA-Farbstich haben.
Glüh- und Halogenlampen (linkes Bild) strahlen hauptsächlich langwelliges Licht ab, der blau und UVA-Anteil ist deutlich reduziert. Das Spektrum ähnelt dem Sonnenlicht bei Sonnenaufgang und Sonnenuntergang. Das gilt nicht nur für den Menschen, auch für Reptilien sieht der Anteil, den die vier Zapfen sehen, bei niedrigem Sonnenstand und einer Halogenlampe sehr ähnlich aus. Allerdings ist die Halogenlampe aus Reptiliensicht noch etwas rötlicher.
Allgemein halte ich diese Lampen für nicht empfehlenswert. Ich nehme sie dennoch in diese Liste zur Farbberechnung mit auf. Ähnlich wie UV-HQI-Strahler haben diese Lampen wegen ihres hohen UVA-Anteils einen deutlich UVA-Farbstich.